Uniform Circular Motion

Object moves on a circle at constant speed.

Direction changes at every instant!

$$\mathbf{v}_1 = \mathbf{v}_2$$

 $\mathbf{v}_1 \neq \mathbf{v}_2$

Uniform Circular Motion

 $\begin{aligned} \mathbf{a} &= \lim_{\Delta t \to 0} \Delta \mathbf{v} / \Delta t \text{ here } a_{R} \text{: radial acc.} \\ \Delta v / v &= \Delta l / r \Rightarrow \Delta v = \Delta l v / r \\ a_{R} &= \lim_{\Delta t \to 0} \Delta v / \Delta t = \lim_{\Delta t \to 0} (v / r \Delta l / \Delta t) \\ \text{But } \lim_{\Delta t \to 0} \Delta l / \Delta t = v \Rightarrow a_{R} = v^{2} / r \end{aligned}$

Uniform Circular Motion

Acceleration a is always perpendicular to velocity

Dynamics of Circular Motion

 $a_{R} = v^{2}/r \Rightarrow$ $F_{R} = m a_{R} = m v^{2}/r$

Dynamics of Circular Motion

Force Diagram: Centripetal force Newtons 3rd law: Force on your hand

Centrifugal force does not exist!

Unbanked vs. Banked Curves

Calculate Banked Curve Problem